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Abstract

A kinetic solver is developed for the initial and boundary value problems of the symmetric hyperbolic moment system.

This nonlinear system of equations is related to the heat conduction in solids at low temperatures. The system consists of a

conservation equation for the energy density e and a balance equation for the heat flux Qi, where e and Qi are the four

basic fields of the theory.We use kinetic flux vector splitting (KFVS) scheme to solve these equations in one and two space

dimensions. The flux vectors of the equations are splitted on the basis of the local equilibrium distribution of phonons.

The resulting computational procedure is efficient and straightforward to implement. The second-order accuracy of the

scheme is achieved by using MUSCL-type reconstruction and min-mod nonlinear limiters. The solutions exhibit second-

order accuracy and satisfactory resolution of gradients with no spurious oscillations. The scheme is extended to the two-

dimensional case in a usual dimensionally split manner. In order to prescribe the boundary data, we need the knowledge

of the e and Qi. However, in experiments only one of the quantities can be controlled at the boundary. This problem is

removed by using a continuity condition. It turned out that after some short time energy and heat flux are related to each

other according to Rankine–Hugoniot jump relations. To illustrate the performance of the KFVS scheme, we perform

several one- and two-dimensional test computations. For the comparison of our results, we use high order central

schemes. The present study demonstrates that this kinetic method is effective in handling such problems.
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1. Introduction

Heat conduction processes are usually described by a parabolic system. It results from a diffusion law,
where the heat flux is proportional to the temperature gradient. That constitutive law implies the paradox of

heat conduction whereupon heat may traverse a body with infinite speed. This fact is not acceptable from

physical point of view. In most technical process, in particular at room temperature, those modes that

propagate with infinite speed suffer a considerable damping and are thus not observable. However, there are

cases where either the damping of heat pulses is quite low or where its travel distance is so small that the

transit time is an observable quantity. In those cases the parabolic system has to be replaced by physically

justified hyperbolic system of heat conduction. A comprehensive study of many phenomena which appear in

the temperature range between 5 and 20 K is described in the papers of Dreyer and coworkers [3,6]. In that
range heat conduction of crystalline solids must be considered as the motion of phonons which may interact

with the lattice impurities and with each other. The papers [3,6] report on special circumstances that are met

in a quite pure crystal at not too low temperature. Here, the state of crystal is sufficiently described by four

thermodynamic fields as the basic variables. These are the energy density e, or the temperature T , and the

heat flux Q ¼ ðQiÞi¼1;2;3. The resulting system of field equations is of the symmetric hyperbolic type.

In this paper, we consider this system in one and two space dimensions and solve it for initial and

boundary value problems (IBVP). This nonlinear system consist of a conservation equation for the energy

density e and a balance equation for the heat flux Qi, and it is derived by averaging of the BPE. The closure
problem is solved by the maximum entropy principle [5]. The IBVP that uses exclusively prescribed boundary

data for the energy density e is solved by a kinetic approach. The kinetic representation of the IBVP reveal a

peculiar phenomenon. The contributions to the solution are from initial data at the right of the wall, as well

as the fields at the wall ew and Qw. However, only one of these quantities can be controlled in an experiment.

To overcome this problem we use a continuity condition, see [3]. It turns out that after short time energy and

heat flux are related to each other according to the Rankine–Hugoniot jump relations given in [3,5].

Flux splitting is a technique for achieving upwinding bias in numerical flux function, which is a natural

consequence of regarding a fluid as an ensemble of particles. Since particles can move forward or backward,
this automatically splits the fluxes of mass, momentum and energy into forward and backward fluxes

through the cell interface, i.e.,

Fiþ1
2
¼ F þðWiÞ þ F �ðWiþ1Þ;

where Wi in our case represents the energy density and heat flux inside the cell i. Although kinetic flux vector

splitting (KFVS) scheme is based on the free particle transport, an artificial collision term has been im-

plicitly added in the projection stage. For example at the end of each time step, a phonon distribution

function fN inside each cell is re-initiated, which is equivalent to perform particle collisions instantaneously

to make the transition from non-equilibrium state, i.e. free-flight f , to equilibrium state fN inside each cell.
The dynamical effect from the two numerical stages (i.e., free-flight and projection) in the KFVS scheme is

qualitatively described in Fig. 1, where the free transport in the evolution stage evolves the system away

from the equilibrium solution (f becomes more and more different from a equilibrium distribution of

phonons), the projection stage drives the system towards the equilibrium solution (the instantaneous

preparation of equilibrium states), in case of Euler equations, see [16].

In the KFVS scheme, we start with a cell averaged initial data of the conservative variables e, Qi, and get

back the cell averaged values of the conservative variables at the next time step. In the two-dimensional

case, the flux splitting is done in a usual dimensionally split manner, that is, the formulae for the fluxes can
be used along each coordinate direction. In order to get second-order accuracy, we use the MUSCL-type

reconstruction in both one and two-dimensional cases.

In 1929, Peierls [14] proposed his celebrated theoretical model based on the Boltzmann equation. Ac-

cording to him the lattice vibrations responsible for the heat transport can be described as an interacting gas



Fig. 1. KFVS solution vs. moment system solution.
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of phonons. The Boltzmann–Peierls approach is one of the milestones of the theory of thermal transport in

solids, especially at very low temperatures. It is important to mention that Fourier theory of heat flow fails

to describe heat conduction processes at low temperatures, see for example [6] and references therein.

It is important to mention that the ideas used in this paper were also utilized to obtain the kinetic so-

lution of the ultra-relativistic Euler equations, see [8,9,11].

This paper consist of seven sections. In Section 2, we recall the three-dimensional BPE and its hyperbolic

moment system [4,6,10]. In Section 3, we give the kinetic schemes for the hyperbolic moment system in three

space dimensions. We reduce the three-dimensional moment integrals to twofold surface integrals by using
polar coordinates. Using special coordinates, we further reduce the already reduced moment integrals in

one and two space dimensions. In Section 4, we use the KFVS scheme in order to solve the one-dimensional

hyperbolic moment system. We extend the scheme to second-order by using MUSCL-type reconstruction.

We also extend the scheme to account for the boundary conditions. In Section 5, we solve the two-

dimensional hyperbolic moment system. We also extend the scheme to second-order by using MUSCL-type

reconstruction. In Section 6, we give some numerical test computations in one and two space dimensions.

For the comparison of our results from KFVS scheme we use high order central schemes [7,12,13]. In

Section 7, we give the conclusions about the results.
2. BPE and its hyperbolic moment system

The Boltzmann–Peierls equation is a kinetic equation for the phase density of phonons. This equation

describes the evolution of the phase density f ðt; x; kÞ, where f ðt; x; kÞd3xd3k is interpreted as the number of

phonons at time t in an infinitesimally small phase cell element d3xd3k centered at ðx; kÞ. Here �hk denote the

momentum, k the phonon wave vector and �h is Planck�s constant, see [6,14] for further details. The mi-
croscopically three-dimensional Boltzmann–Peierls equation (BPE) can be written as

of
ot

þ ox
okk

of
oxi

¼ fðf Þ; ð1Þ

where x is the phonon frequency, t is time, and f is the collision operator which will be defined below. In a

real crystal, there are three phonon modes and thus there are three phase densities corresponding to two

transversal modes and one longitudinal mode. In [6], it is described that for simplicity one can replace the
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actual crystal by a so called Debye solid, which is characterized by a single mode only. In addition the

assumed dispersion relation between the phonon frequency x and the wave vector k is given by

x ¼ cjkj: ð2Þ

Here, the Debye velocity c is related to mean of the two transversal and longitudinal sound speeds of the

actual crystal. Thus the BPE is given by

of
ot

þ c
X3
i¼1

ki

jkj
of
oxi

¼ fðf Þ: ð3Þ

The moments of the phase density f reflect the kinetic processes on the scale of continuum physics. The

most important moments are:

eðt; xÞ ¼ �hc
Z 1

�1
jkjf ðt; x; kÞd3k; ð4Þ
Qiðt; xÞ ¼ �hc2
Z 1

�1
kif ðt; x; kÞd3k; ð5Þ
Nijðt; xÞ ¼ �hc
Z 1

�1

kikj

jkj f ðt; x;kÞd
3k; i; j ¼ 1; 2; 3: ð6Þ

The fields e, Q ¼ ðQ1;Q2;Q3Þ and the matrix N ¼ ðNijÞ are the energy density, heat flux and momentum
flux, respectively. Phonons are classified as Bose particles [6,14], and the corresponding entropy density–

entropy flux pair ðh;uÞ is given by

hðf Þ :¼ y
Z
R3

1

��
þ f

y

�
ln 1

�
þ f

y

�
� f

y
ln

f
y

� ��
d3k; ð7Þ
uiðf Þ :¼ yc
Z
R3

ki

jkj 1

��
þ f

y

�
ln 1

�
þ f

y

�
� f

y
ln

f
y

� ��
d3k; ð8Þ

where y ¼ 3=8p3, see [6] .

In contrast to the ordinary gas atoms, the phonons may interact by two different collision processes,

called R- and N-processes. R-processes include interactions of phonons with lattice impurities which de-

stroy the periodicity of the crystal, while N-processes can be interpreted as phonon–phonon interactions

which are due to the deviations from harmonicity of the crystal forces. N-processes conserve both, energy
and momentum, while R-processes only conserve energy. The Callaway approximation of the collision

operator [1,6] is a suitable simplification of the actual interaction processes. The Callaway collision oper-

ator is written as the sum of two relaxation operators modeling the R- and N-processes separately. We write

fðf Þ ¼ fRðf Þ þ fNðf Þ; fa ¼
1

sa
Pafð � f Þ; a 2 fR;Ng: ð9Þ

The positive constants sR and sN are the relaxation times, while PR and PN are two nonlinear projectors.

Here PRf and PNf represent the phase densities in the limiting case when the relaxation time tends to zero.

Explicitly, we define PRf and PNf as the solutions of two optimization problems, namely

hðPRf Þ ¼ max
f 0

hðf Þ : eðf 0Þ
�

¼ eðf Þ
�
; ð10Þ
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hðPNf Þ ¼ max
f 0

hðf Þ : eðf 0Þ
�

¼ eðf Þ;Qðf 0Þ ¼ Qðf Þ
�
; ð11Þ

where eðf Þ and Qðf Þ are given by (4) and (5). The maximization problems can be solved by means of

Lagrange multipliers K0
R and K0

N;K
1
N;K

2
N, K

3
N. Therefore we get

PRf ðkÞ ¼
y

�1þ expðRRÞ
; PNf ðkÞ ¼

y
�1þ expðRNÞ

; ð12Þ

where

RRðt; x; kÞ ¼ �hcjkjK0
R; ð13Þ
RNðt; x; kÞ ¼ �hcjkjK0
Nðt; xÞ þ �hkiKi

Nðt; xÞ: ð14Þ

From (10) and (11), the Lagrange multipliers can be calculated explicitly. They are given by, see [3,4],

K0
R ¼ 10�h3c3

p2
e

� ��1=4

; K0
N ¼ c

ðF =eÞ1=4

ð4� F Þ3=4
; Ki

R ¼ � c
4

ðF =eÞ5=4

ð4� F Þ3=4
Qi; ð15Þ
F ¼ 6

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4

jQj
ce

� 	2r ; c ¼ 4p5y

45�h3c3

� �1=4

: ð16Þ

When the thermodynamic state is described by four fields e and Qi only, then we can derive the following

balance equations from the Boltzmann–Peierls equation (3) and the maximum entropy principle, see [3],

oe
ot

þ oQi

oxi
¼ 0;
oQi

ot
þ o c2Nijð Þ

oxj
¼ � 1

sR
Qi; i; j ¼ 1; 2; 3; ð17Þ
Nij ¼ 1

3
edij þ 1

2
eð3v� 1Þ QiQj

jQj2

 
� 1

3
dij
!
;

where v is the so-called Eddington-factor:

v ¼ 5

3
� 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4

jQj
ce

� �2
s

: ð18Þ

Note that in above Eq. (17) the sN term do not appear on the right-hand side, therefore the applicability of

these equations is restricted to the relaxation limit sN ! 0.

We can rewrite (17) as

oW
ot

þ
X3
i¼1

oF iðW Þ
oxi

¼ SðW Þ; ð19Þ
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where

W ¼

e
Q1

Q2

Q3

0
BB@

1
CCA; F iðW Þ ¼

Qi

c2N 1i

c2N 2i

c2N 3i

0
BB@

1
CCA; SðW Þ ¼ � 1

sR

0

Q1

Q2

Q3

0
BB@

1
CCA: ð20Þ

3. Moments of the linear transport equation

The linear transport equation (3) without collision term is given by

of
ot

þ c
X3
i¼1

ki

jkj
of
oxi

¼ 0 with I:D: f ðtn; x; kÞ ¼ fnðx; kÞ: ð21Þ

The exact solution of (21) for tn 6 s < tnþ1 ¼ tn þ Dt is

f ðtn þ s; x; qÞ ¼ fn x
�

� s
k

jkj ; k
�
: ð22Þ

Using (22) in the moment integrals (4)–(6) we get

eðtn þ s; xÞ ¼
Z
R3

jkjfn x

�
� s

k

jkj ; k
�
d3k;

Qiðtn þ s; xÞ ¼
Z
R3

kifn x

�
� s

k

jkj ; k
�
d3k;

Nijðtn þ s; xÞ ¼
Z
R3

kikj

jkj fn x

�
� s

k

jkj ; k
�
d3k;

ð23Þ

where fn is phonon initial phase density at time tn

fnðy; qÞ ¼ PNf ðeðtn; yÞ;Qðtn; yÞ; kÞ: ð24Þ

Now we can simplify the volume integrals (23) for the free flight moments. We can see in (24) that the fields

eðt; yÞ and Qðt; yÞ are not depending on jkj but only on the unit vector n ¼ ðn1; n2; n3ÞT ¼ k=jkj. This fact
enables us to reduce the threefold volume integrals to the twofold surface integrals by applying polar

coordinates, see [3,8].

The phonons phase density PNf depends on the wave vector k 2 R3, therefore we can calculate the

reduced phonons phase density according to the radial integration in polar-coordinates

WNðy; nÞ ¼ �hc
Z 1

0

jkj3PNf ðtn; y; jkjnÞdjkj: ð25Þ

Using the abbreviations

WN ¼ 3

4p
eð4� F Þ3

F 1� FniQi

4ce

� 	4 ; F ¼ 6

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4

jQj
ce

� 	2r ; ð26Þ

then after performing integration in (25), we get
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eðtn þ s; xÞ ¼
I

oBð0;1Þ

WNðx� sn; nÞdSðnÞ;

Qiðtn þ s; xÞ ¼ c
I

oBð0;1Þ

niWNðx� sn; nÞdSðnÞ;

Nijðtn þ s; xÞ ¼
I

oBð0;1Þ

ninjWNðx� sn; nÞdSðnÞ:

ð27Þ

Here n ¼ k=jkj is the unit vector in direction of k and Bðx0; rÞ is the ball with radius r and center x0. Its

boundary is the sphere oBðx0; rÞ. In the following one and two-dimensional cases, we will first analytically

integrate the one-sided flux moment integrals obtained from (27) by using flux vector splitting technique

and then we apply the upwind scheme on the fluxes. This makes our scheme computationally efficient

because there is no need of any numerical intergation routine for the fluxes. This kind of kinetic-based

algorithm approach has been illustrated by Chou and Baganoff [2] for the Naiver–Stokes equations, as well
as by Kunik et al. [9] for the ultra-relativistic Euler equations.

Furthermore, if we introduce instead of the unit vector n the new variables �16 n6 1 and �p5u5p by

n1 ¼ n; n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
sinu; n3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
cosu; ð28Þ

then the simplified free-flight moments integrals for the one- and two-dimensional cases are given below, see

[3,8].

One-dimensional moment integrals

Here, we only consider solutions which depend on t and x ¼ x1 and satisfy e ¼ eðt; xÞ;Q ¼ ðQðt; xÞ; 0; 0Þ.
In this case, the quantities e;Q in the free-flight phase density are not depending on the variable u. This fact
enables us to carry out the integration with respect to u directly. Thus, the twofold surface integrals reduces

to simple n-integrals. For abbreviation, we introduce

WN ¼ 3

2

eð4� F Þ3

F 1� F nQ
4ce


 �4 ; F ¼ 6

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4

jQj
ce

� 	2r ; ð29Þ

then the reduced integrals for the moments can be written as

W ðtn þ s; xÞ ¼ eðtn þ s; xÞ
Qðtn þ s; xÞ

� �
¼
Z 1

�1

WNðx� sn; nÞ
cnWnðx� sn; nÞ

� �
dn; ð30Þ
F ðtn þ s; xÞ ¼ Qðtn þ s; xÞ
Nðtn þ s; xÞ

� �
¼
Z 1

�1

cnUðx� sn; nÞ
n2Wðx� sn; nÞ

� �
dn: ð31Þ

Two-dimensional moment integrals

In this case, we consider the solutions which depend on t, x ¼ x1 and y ¼ x2 and satisfy e ¼
eðt; x; yÞ;Q ¼ ðQ1ðt; x; yÞ;Q2ðt; x; yÞ; 0Þ. Instead of the unit vector n, we use again the new variables in (28).

Then the moment integrals take again a simpler form, namely

W ðtn þ s; x; yÞ ¼
eðtn þ s; x; yÞ
Q1ðtn þ s; x; yÞ
Q2ðtn þ s; x; yÞ

0
@

1
A ¼

Z p

�p

Z 1

�1

WNðy; n1; n2Þ
cn1WNðy; n1; n2Þ
cn2WNðy; n1; n2Þ

0
@

1
Adndu; ð32Þ
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F ðtn þ s; x; yÞ ¼
Q1ðtn þ s; x; yÞ
N 11ðtn þ s; x; yÞ
N 12ðtn þ s; x; yÞ

0
@

1
A ¼

Z p

�p

Z 1

�1

cn1WNðy; n1; n2Þ
ðn1Þ2WNðy; n1; n2Þ
n1n2WNðy; n1; n2Þ

0
@

1
Adndu; ð33Þ
Gðtn þ s; x; x; yÞ ¼
Q2ðtn þ s; x; yÞ
N 21ðtn þ s; x; yÞ
N 22ðtn þ s; x; yÞ

0
@

1
A ¼

Z p

�p

Z 1

�1

n2WNðy; n1; n2Þ
n1n2WNðy; n1; n2Þ
ðn2Þ2WNðy; n1; n2Þ

0
@

1
Adndu;

where y ¼ x� sn1; y � sn2 and WN is given by (26). The above one- and two-dimensional free-flight mo-

ments integrals will be used in order to derive KFVS schemes for the one- and two-dimensional hyperbolic

heat conduction equations.
4. One-dimensional KFVS scheme

Here, we want to solve the one-dimensional moment system

oW
ot

þ oF ðW Þ
ox

¼ SðW Þ; ð34Þ

where

W ¼ e
Q

� �
; F ðW Þ ¼ Q

c2N

� �
; SðW Þ ¼ � 1

sR

0

Q

� �
: ð35Þ

We start with a piecewise constant initial data W
n
i at time tn over the cells ½xi�1

2
; xiþ1

2
� of a given mesh size

Dx ¼ xiþ1
2
� xi�1

2
. We have to compute W

nþ1

i at time tnþ1 ¼ tn þ Dt over the same cells. We take the natural

CFL condition Dt ¼ Dx=2 in order to ensure that neighbouring waves will not interact. The left-hand side of

(34) can be approximated by a first-order upwind conservative scheme. For the nonlinear relaxation term

on the left-hand side, a standard centered approximation technique is used, see [17]. Our scheme thus reads

W
nþ1

i ¼ W
n
i � k F n

iþ1
2

h
� F n

i�1
2

i
þ DtS

n
i ; ð36Þ

where k ¼ Dt=Dx and F n
iþ1

2

represent the fluxes across the cell interface. From (31), we have for ga ¼ ðcn; n2ÞT

F n
iþ1

2
¼ 1

Dt

Z tnþ1

tn

F ðs; xiþ1
2
Þds ¼ 1

Dt

Z tnþ1

tn

Z 1

�1

gaWNðxiþ1
2
� sn; nÞdnds: ð37Þ

The CFL condition states that n-integration is limited to n such that jnjs6Dx. This means that xi�1
2
� ns

remains in a neighbour cell to xi�1
2
. This implies that the field variables e;Q in the one-sided integrals will not

depend on the n-integration, therefore Eq. (37) can be analytically integrated in the following way:

1

Dt

Z tnþ1

tn

F ðs; xiþ1
2
Þds ¼

Z 1

0

WNðxi; nÞdnþ
Z 0

�1

WNðxiþ1; nÞdn ¼ F þ
i þ F �

iþ1; ð38Þ

where F �
i ¼ Q�

i

c2N�
i

� �
for each cell Ii, and

Q�
i ¼ 4c3e3i � 4þ Fi½ �3 � 12cei þ FiQi½ �

Fi 4cei � FiQi½ �3
; N�

i ¼ 32c3e4i 4� Fi½ �3

Fi 4cei � FiQi½ �3
: ð39Þ
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We finally get the following upwind KFVS scheme

W
nþ1

i ¼ W
n
i � k F þ

i

�
þ F �

iþ1 � F þ
i�1 � F �

i


þ DtS

n
i : ð40Þ

Using the flux vector splitting technique, we have first analytically integrated the one-sided flux moment

integrals and then applied the upwind scheme on the fluxes, see [2,9]. Therefore we do not need any in-

tegration for the fluxes in our computer code, as we have explicit relations for the fluxes which are given by

(39). We will also use the same strategy in the two-dimensional case.
4.1. Second-order extension of the scheme in 1D

In order to get the second-order accuracy, we have the following three steps:

(I) Data reconstruction. Starting with a piecewise-constant solution in time and space,
P

W
n
i viðxÞ, one

reconstruct a piecewise linear (MUSCL-type) approximation in space, namely

W nðxÞ ¼
X

W
n
i

�
þ W x

i

ðx� xiÞ
Dx

�
viðxÞ: ð41Þ

Here, viðxÞ is the characteristic function of the cell, Ii :¼ fn j jn� xij6 Dx
2
g, centered around xi ¼ iDx, and W x

i

abbreviates a first-order discrete slopes.

The extreme points x ¼ 0 and x ¼ Dx, in local coordinates correspond to the intercell boundaries in

general coordinates xi�1
2
and xiþ1

2
, respectively, see Fig. 2. The values Wi at the extreme points are

W L
i ¼ W

n
i � 1

2
W x

i ; W R
i ¼ W

n
i þ 1

2
W x

i ; ð42Þ

and are usually called boundary extrapolated values.

A possible computation of these slopes, which results in an overall nonoscillatory schemes (consult [15]),

is given by family of discrete derivatives parameterized with 16 h6 2, i.e., for any grid function fWig we set

W x
i ¼ MM hDWiþ1

2
; h
2
ðDWi�1

2

�
þ DWiþ1

2
Þ; hDWi�1

2

	
:

Here, D denotes the central differencing, DWiþ1
2
¼ Wiþ1 � Wi , and MM denotes the min-mod nonlinear

limiter

MMfx1; x2; . . .g ¼
minifxig if xi > 0; 8i;
maxifxig if xi < 0; 8i;
0 otherwise:

8<
: ð43Þ

This interpolant (41) is then evolved exactly in time and projected on the cell-averages at the next time step.

(II) Evolution. For each cell Ii, the boundary extrapolated values W L
i , W

R
i in (42) are evolved for a time

1
2
Dt by:

Ŵ L
i ¼ W L

i þ 1

2

Dt
Dx

F ðW L
i Þ

�
� F ðW R

i Þ

þ Dt

2
S
n
i ;

Ŵ R
i ¼ W R

i þ 1

2

Dt
Dx

F ðW L
i Þ

�
� F ðW R

i Þ

þ Dt

2
S
n
i :

ð44Þ

In order to calculate the source term at half time step, we need

W
nþ1

2

i ¼ W
n
i þ

1

2

Dt
Dx

F ðW n
iþ1Þ

�
� F ðW n

i Þ

þ Dt

2
S
n
i ; ð45Þ



Fig. 2. Second-order reconstruction.
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where the force F is given by (35)2. Note that this evolution step is entirely contained in each cell Ii, as the
intercell fluxes are evaluated at the boundary extrapolated values of each cell. At each intercell position iþ 1

2

there are two fluxes, namely W R
i and W L

iþ1, which are in general distinct. This does not really affect the

conservative character of the overall method, as this step is only an intermediate step [15].

(III) Finally we use the conservative formula (40) in order to get the conservative variables at next time

step

W
nþ1

i ¼ W
n
i �

Dt
Dx

F
nþ1

2

iþ1
2

h
� F

nþ1
2

i�1
2

i
þ DtS

nþ1
2

i ; ð46Þ

where F
nþ1

2

iþ1
2

¼ F þðŴ R
i Þ þ F �ðŴ L

iþ1Þ and S
nþ1

2

i ¼ SðW nþ1
2

i Þ.

4.2. Application of boundary conditions

Since we are using a conservative scheme, therefore the application of the boundary conditions is not
complicated. For the illustration of the boundary conditions we consider half space. We will discuss the

boundary conditions only at the left boundary x ¼ 0, however the procedure is similar for the other

boundary and in multi-dimensional case. We consider the boundary x ¼ 0 as a cell interface. We name the

moments at the auxiliary cell IA by enA and on Qn
A at the left of the boundary x ¼ 0 at time tn. We denote

the values of the moments at the wall x ¼ 0 by enw and Qn
w. Once we have the values of the moments at the

auxiliary elements, we can calculate the equilibrium phase density at that element. We have the conditions

ewðtnÞ ¼ eþAðtnÞ þ e�1 ðtnÞ; QwðtnÞ ¼ Qþ
AðtnÞ þ Q�

1 ðtnÞ; ð47Þ
where e� can be obtained in similar way as Q� in (39) for a particular element. The fields en1 and Qn

1 on the

right-hand side of the wall are known from the initial data. We have the following boundary conditions:

Reflecting boundary conditions. In this case, we need the heat flux at the wall to be zero. Thus we take

enA ¼ en1 and Qn
A ¼ �Qn

1, which is equivalent to wAðtn; nmÞ ¼ HNwðen1; jQn
1j;�nmÞ.

Outflow boundary conditions. In this case, we need the same values on both sides of the wall. Thus we

take enA ¼ en1 and Qn
A ¼ Qn

1, which is equivalent to wAðtn; nmÞ ¼ HNwðen1; jQn
1j; nmÞ.



W. Dreyer, S. Qamar / Journal of Computational Physics 198 (2004) 403–423 413
Inflow boundary conditions. In this case, if we are given the values of enw and Qn
w at the wall then we can

use Eq. (47) in order to find enA and Qn
A. However, in experimental point of view enw and Qn

w cannot be

given simultaneously. Either the energy density enW is controlled at the wall, or the wall is equipped with

a procedure of Joule�s heat and thus the heat flux is prescribed. Here, we consider the case that enw is given
from the experiment but not Qn

w. It turns out that we require the continuity condition enA ¼ enw at each

time step tn. Let us define
an ¼ F n
AQ

n
A

4cenA
; f ðanÞ ¼ 1

2

ðanÞ2 � 3an þ 3

ðanÞ2 þ 3
ð1� aÞ3:

Then (47)1 with enA ¼ enw gives

enw ¼ enAf ðanÞ þ e�1 ðtnÞ;

which implies

1� f ðanÞ ¼ e�1 ðtnÞ
enw

: ð48Þ

We know the right-hand side of this equation. Also f ðaÞ is monotonically increasing with f ð�1Þ ¼ 0 and

f ð1Þ ¼ 1, therefore the solution of the above equation only exist whenever the right-hand side is out of

the range ½0; 1�. We use Newton method to solve this equation for the unknown an. Finally, we determine

the auxiliary field Qn
A according to

Qn
A ¼ 4an

ðanÞ2 þ 3
enA: ð49Þ

5. Two-dimensional KFVS scheme

Here, we want to solve the two-dimensional moment system

oW
ot

þ oF ðW Þ
ox

þ oGðW Þ
oy

¼ SðW Þ; ð50Þ

where

W ¼
e
Q1

Q2

0
@

1
A; F ðW Þ ¼

Q1

c2N 11

c2N 21

0
@

1
A; GðW Þ ¼

Q2

c2N 12

c2N 22

0
@

1
A; SðW Þ ¼ �1

sR

0

Q1

Q2

0
@

1
A:

We start again with a piecewise constant initial data of the conservative variables W
n
i;j. The integration of

(50) over the control volume ½tn; tnþ1� � ½xi�1
2
; xiþ1

2
� � ½yj�1

2
; yjþ1

2
� gives

W
nþ1

i;j ¼ W
n
i;j � k F n

iþ1
2
;j

h
� F n

i�1
2
;j

i
� l Gn

i;jþ1
2

h
� Gn

i;j�1
2

i
þ DtSn

i;j; ð51Þ

where k ¼ Dt=Dx, l ¼ Dt=Dy and

F n
iþ1

2
;j ¼

1

Dt

Z tnþ1

tn

F ðs; xiþ1
2
; yjÞds; Gn

i;jþ1
2
¼ 1

Dt

Z tnþ1

tn

Gðs; xi; yjþ1
2
Þds;

where the flux moments F ðs; xiþ1
2
; yjÞ and Gðs; xi; yjþ1

2
Þ are given in (33).
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If the CFL condition Dt6 1
2
minðDx;DyÞ is satisfied, then we can utilize the KFVS. Since after flux

splitting the fields e, Q1 and Q2 in (32) and (33) are not depending on the integration variables n and u,
therefore we can solve analytically these moments integrals for the fluxes. This gives

F n
iþ1

2
;j ¼ F þ

i;j þ F �
iþ1;j; Gn

i;jþ1
2
¼ Gþ

i;j þ F �
i;jþ1; ð52Þ

where

F �
i;j ¼

Q1

c2N 11

c2N 21

0
@

1
A

�

i;j

; G�
i;j ¼

Q2

c2N 12

c2N 22

0
@

1
A

�

i;j

ð53Þ

and (33) implies that

ðQ1
i Þ

� ¼ 2048Q1
i c

2eia�
256c2eia

Fib
3
2

3b4
2

�
þ 6F 2

i ðQ1
i Þ

2b2
2 � F 4

i ðQ1
i Þ

4
	
;

ðQ2
i Þ

� ¼ 2048Q2
i c

2eia�
256c2eia

Fib
3
1

3b4
1

�
þ 6F 2

i ðQ2
i Þ

2b2
1 � F 4

i ðQ2
i Þ

4
	
;

ðN 11
i Þ� ¼ � 128aQ1

i

b2

3b2
2

�
þ F 2

i ðQ1
i Þ

2
	
þ 128a

Fi
b2
2

�
þ 3F 2

i ðQ1
i Þ

2
	
;

ðN 22
i Þ� ¼ � 128aQ2

i

b1

3b2
1

�
þ F 2

i ðQ2
i Þ

2
	
þ 128a

Fi
b2
1

�
þ 3F 2

i ðQ2
i Þ

2
	
;

ðN 21
i Þ� ¼ 512aFiQ1

i Q
2
i �

64Q2
i a

b3
2

3b4
2

�
þ 6F 2

i ðQ1
i Þ

2b2
2 � F 4

i ðQ1
i Þ

4
	
;

ðN 12
i Þ� ¼ 512aFiQ1

i Q
2
i �

64Q1
i a

b3
2

3b4
1

�
þ 6F 2

i ðQ2
i Þ

2b2
1 � F 4

i ðQ2
i Þ

4
	

ð54Þ

with

a ¼ c4e5i ð�4þ FiÞ3

� 16c2e2i þ F 2
i ððQ1

i Þ
2 þ ðQ2

i Þ
2Þ

h i3 ; bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16c2e2 � ðF 2QkÞ2

q
; k ¼ 1; 2: ð55Þ

Here for the fluxes F �
i;j , we split the integrals with respect to variable n and take the integration with respect

to variable u as a whole. While for the fluxes G�
i;j, we split the integrals with respect to variable u and

integrate the integrals with respect to n as a whole. Thus, we have the following conservative scheme:

W
nþ1

i;j ¼ W
n
i;j � k F þ

i

h
þ F �

iþ1;j � F þ
i�1;j � F �

i;j

i
� l Gþ

i;j

h
þ G�

i;jþ1 � Gþ
i;j�1 � G�

i;j

i
þ DtSn

i;j: ð56Þ

Using the flux vector splitting technique, we have first analytically integrated the one-sided flux moment in-

tegrals and then applied the upwind scheme on the fluxes, see [2,9]. Therefore, we do not need any integra-

tion for the fluxes in our computer code, as we have explicit relations for the fluxes which are given by

(52)–(54).
5.1. Second-order extension of the scheme in 2D

Here, we present the second-order MUSCL-type approach for the two-dimensional case. Keeping in

view the MUSCL approach discussed in the previous section for the one-dimensional case, we have again

the following three steps.
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(I) Data reconstruction and boundary extrapolated values. Starting with a piecewise-constant solution

in time and space, W
n
i;j, one reconstruct a piecewise linear (MUSCL-type) approximation independently in

x- and y-directions by selecting respective slope vectors (differences) W x and W y . Boundary extrapolated
values are

W Lx
i;j ¼ W

n
i;j � 1

2
W x

i;j; W Rx
i;j ¼ W

n
i;j þ 1

2
W x

i;j;

W Ly
i;j ¼ W

n
i;j � 1

2
W y

i;j; W Ry
i;j ¼ W

n
i;j þ 1

2
W y

i;j:
ð57Þ

A possible computation of these slopes, is given by family of discrete derivatives parameterized with

16 h6 2, for example

W x
i;j ¼ MM hDW iþ1

2
;j;
h
2

DW iþ1
2
;j

��
þ DW i�1

2
;j

	
; hDW i�1

2
;j

�
;

W y
i;j ¼ MM hDW i;jþ1

2
;
h
2

DW i;jþ1
2

��
þ DW i;j�1

2

	
; hDW i;j�1

2

�
:

Here D denotes central differencing,

DW iþ1
2
;j ¼ W iþ1;j � W i;j; DW i;jþ1

2
¼ W i;jþ1 � W i;j;

and MM denotes the min-mod nonlinear limiter given by (43).
(II) Evolution of boundary extrapolated values. The boundary extrapolated values are evolved at a time

Dt=2 by using

Ŵ l
i;j ¼ W l

i;j � k F ðW Rx
i;j Þ

h
� F ðW Lx

i;j Þ
i
� l GðW Ry

i;j Þ
�

� GðW Ly
i;j Þ

þ Dt

2
S
n
m;i; ð58Þ

for l ¼ Lx;Rx;Ly;Ry. Further, to calculate the source term at half time step, we need

W
nþ1

2

i;j ¼ W
n
i;j � k F ðW n

iþ1;jÞ
h

� F ðW n
i;jÞ
i
� l GðW n

i;jþ1Þ
h

� GðW n
i;jÞ
i
þ Dt

2
S
n
m;i: ð59Þ

(III) Solution at the next time step. At each intercell position one solves

W
nþ1

i;j ¼ W
n
i;j � k F

nþ1
2

iþ1
2
;j

h
� F

nþ1
2

iþ1
2
;j

i
� l G

nþ1
2

i;jþ1
2

h
� G

nþ1
2

i;jþ1
2

i
þ DtS

nþ1
2

i ; ð60Þ

where

F
nþ1

2

iþ1
2
;j
¼ F þðŵRx

i;j Þ þ F �ðŵLx
iþ1;jÞ;G

nþ1
2

i;jþ1
2

¼ GþðŵRy
i;j Þ þ G�ðŵLy

i;jþ1Þ:
6. Numerical examples

In order to validate our results obtained in the previous sections, we present some numerical test cases.

We consider the numerical test cases for the one and two-dimensional cases. For the comparison of the
results we use high order central schemes [7,12,13].

6.1. Two interacting heat pulses

This one-dimensional test problem demonstrates the interaction of two heat pulses, which leads to a

large increase of the energy density at the collision point during a short time interval. The initial data are
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eð0; xÞ ¼

1; x6 0:3;
2; 0:36 x6 0:4;
1; 0:46 x6 0:6;
2; 0:66 x6 0:7;
1; x6 1:0;

8>>>><
>>>>:

Qð0; xÞ ¼

0; x6 0:3;
1; 0:36 x6 0:4;
0; 0:46 x6 0:6;
�1; 0:66 x6 0:7;
0; x6 1:0:

8>>>><
>>>>:

ð61Þ

We solve the moment system for the above problem at time t ¼ 0:5 for sR ¼ 1:0. We take 200 mesh points

in the x-space. Fig. 3 shows the results. From the comparison of the initial and final curves of energy

density, we observe a large increase of the energy density e at the collision point x ¼ 0:5.
6.2. Reflection of a single shock

Here, consider a single shock solution for the moment system with reflecting boundary conditions at the
lower boundary x ¼ 0. The initial data are

ðe;QÞð0; xÞ ¼
ð1; 0Þ; x6 0:5;

2;� 1ffiffi
3

p
ffiffiffiffiffiffiffiffiffiffi
3
ffiffi
2

p
�1ffiffi

2
p

þ1

q� 	
; xP 0:5:

(
ð62Þ

This single shock data was obtained in [5] by using Rankine–Hugoniot jump conditions. The computa-

tional domain is 06 x6 1. Here, we take 200 mesh points in x-space. Fig. 4 shows the results. The first row
in Fig. 4 shows the results from second-order KFVS scheme in the time range 06 t6 1:7, while the last two
rows are the comparison of the results from KFVS and central schemes at time t ¼ 1:7.
6.3. Periodic boundary conditions

In the following one-dimensional numerical problem, we apply the inflow boundary conditions to the

moment system. We observe the following phenomena:

(a) the formation and steeping of shock fronts,
(b) the speed of shock front is apparently larger than c=

ffiffiffi
3

p
,

(c) the broadening of initial heat pulses at later times.

Here, we create a periodic heat pulse

ewðtÞ ¼ 2� cosð8ptÞ ð63Þ

at the lower boundary. The initial data are e0 ¼ 1 and Q0 ¼ 0, and the computational domain is

06 x6 1:5. Here ewðtÞ is prescribed but QwðtÞ is calculated according to (48) and (49). Surprisingly in this

case QwðtÞ meet the value which can be obtained by shock conditions in [5]. Fig. 5 gives the results. The

first row in Fig. 5 shows the boundary data, while the second and third rows illustrate the solutions at
t ¼ 1:5. The formation and steepening of shock fronts is clearly visible. We take 200 mesh points in the

spatial domain.
6.4. Heat pulse in 2D

In this example, we consider a two-dimensional energy pulse inside a square box of sides length 0.02,

with out-flow boundaries. Initially the heat fluxes are zero. The energy density is 1.5 inside a small

square box of sides length 0.02 in the center of the large box, while energy density is unity elsewhere.
The results are shown at t ¼ 1:2 in Fig. 6. In all the results we have used 200� 200 mesh points. We

take sR ¼ 1.



Fig. 3. Interaction of two pulses.
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6.5. Explosion in a box

In this example, we consider a two-dimensional energy pulse inside a square box of sides length 2.0, with

periodic boundaries. Initially the heat fluxes are zero. The energy density is 2.0 inside a small square box of



Fig. 4. Periodic boundary conditions.
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sides length 0.5 in the center of the large box, while energy density is unity elsewhere. The results are shown
in Fig. 7 at t ¼ 0:5, t ¼ 1:5 and t ¼ 2:0. In all the results, we have used 300� 300 mesh points. We take

sR ¼ 1.



Fig. 5. A single shock reflection.
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6.6. Inflow IBVP in 2D

This problem represent the propagation of heat pulse



Fig. 6. Evolution of energy density and heat flux in 2D.
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ewðtÞ ¼
1; t6 0:0;
3; 0:0 < t6 0:5;
1; t > 0:5;

8<
: ð64Þ



Fig. 7. Explosion in a box problem.
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which is generated at lower xy-boundaries. The initial data are e0 ¼ 1 and Q1
0 ¼ 0, Q2

0 ¼ 0, and the com-
putational domain is 06 x; y6 1:5. Note that only ewðtÞ is prescribed, while Q1

wðtÞ and Q2
wðtÞ are calculated

numerically form these data. Fig. 8 gives the results. The first and second rows in Fig. 8 illustrate the



Fig. 8. Inflow initial and boundary value problem.
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solution at time t ¼ 1:5 and y ¼ 1. The third row give the surface plots of the energy density and heat flux

Q1 at t ¼ 1:5. We have used 200� 200 mesh points.
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7. Conclusions

In this paper, we have derived first- and second-order KFVS schemes for the solution of initial and
boundary value problems (IBVP) for the hyperbolic heat conduction equations. We have numerically

implement these schemes in one and two space dimensions. The fluxes in the KFVS schemes where cal-

culated by using flux-vector splitting technique on the free-flight flux moment integrals at the cell interface.

The reduction of the three-dimensional moment integrals to surface integrals and their further reduction in

one and two-dimensional cases enable us to integrate analytically the one-sided flux integrals by using

Matlab or Maple packages. We have extend the scheme to account for the boundary conditions by using a

continuity condition. The application of the boundary conditions in KFVS schemes are exactly the same as

in Godunov upwind schemes. For the comparison of the results, we have used central schemes. Similar to
central schemes, the programing code for the KFVS schemes are compact and simpler. It was found that

KFVS schemes have better resolution from the central schemes.
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